ifT
 QUALITY IN MOTION

2000 \& 4000 Series

Operating Manual

Contents

Chapter B - User Utilities 5

1. Windows Users 5
1.1 2000WU : 2000 Windows User 5
1.2 Main functions of 2000 Windows user 6
1.3 UPDATE FIRMWARE WITH 2000WU 6
1.4 Change parameters values with 2000WU 7
2. Serial Link 8
2.1 Dialogue protocol 8
2.2 Dialogue examples 9
Chapter C - Drive Parameters 10
3. Parameters description 10
1.1 Global list of parameters 11
1.2 SCOPE PARAMETERS 19
Chapter D - Setting to Work 20
4. Wiring 20
1.1 CABLE LENGTHS AND CROSS-SECTIONS 20
1.2 Global WIRING PLAN 21
1.3 Control unit wiring 22
1.3.1 XRESOLVER 23
1.3.2 XCOMMAND 24
1.3.3 XENCODER 26
1.3.4 XSERIAL 232 AND XSERIAL 485 27
1.3.5 AXIS SELECTOR 29
1.4 Power Connectors 30
1.4.1 MINI DRIVE TYPE 2004 30
1.4.2 MINI DRIVE TYPES 2006 AND 2009 30
1.4.3 XMOT Connector for Small and Medium drives 31
1.4.4 DETERMINING THE MOTOR PHASES (WITHOUT DRIVE) 32
5. DISPLAY INDICATIONS 33
2.1 Alarms 34
2.2 Warnings 34
6. Parameters settings 35
3.1 Motor parameters 35
3.1.1 EXAMPLE OF MOTOR PARAMETERS 37
3.2 Installation parameters 39
3.2.1 Encoder configuration 39
3.2.2 END-SWITCH CONFIGURATION 41
3.2.3 SSI CONFIGURATION (OPTION) 41
3.2.4 General configuration 42
3.3 Regulation parameters 44
3.3.1 CONFIGURATION 44
3.3.2 CURRENT Loop 45
3.3.3 Speed Loop 47
7. How to set the parameters 49
4.1 How to set the resolver shift angle parameter 50
4.1.1 Procedure using the motor setup tool from Windows user 50
4.1.2 Procedure for manual setting 50
4.2 How to set the current loop parameters 52
4.3 How to set the speed loop parameters 54
8. Trouble shooting 57
Chapter E - Asynchronous motor 59
9. Change of motor and feedback type 59
10. SPECIAL PARAMETERS FOR ASYNCHRONOUS MOTORS 60
2.1 Field weakening 60
2.2 ASYnchronous alarm 60
$2.3 \quad$ Feedback type 61
2.3.1 Resolver feedback 61
2.3.2 Encoder feedback 61

Chapter B - User Utilities

This section of the manual describes the use of customer utilities. The software is for PC compatible computer.

1. Windows Users

The Windows user software runs under Windows XP or later.
This software regroups all functions of the old DOS programs and advanced functions such as integrated scope (if the firmware includes this function).

1.1 2000WU : 2000 Windows User

Like many Windows applications, this software must be installed by starting the SETUP.EXE file, delivered on the installation disk (the SETUP can be executed from the file menu or from the file manager). This operation installs all libraries needed and the application icons.

Installation problems :

1) Installation message :

COMMDLG is in use. Please close all applications and re-attempt Setup. Solution:

Choose Ignore

Using 2000WU

A double click on the icon starts the application.

Much information are included in the help file, it can be called by the menu « Help » or by a strike of F1 KEY anywhere in the software, to obtain help on the current opened window.

1.2 Main functions of 2000 Windows user

57

Monitor utility to update the firmware

Parameters viewing and setting

Alarms and status view

Scope function for displaying and printing two different channels (speed, current , resolver signal , ..)
$\stackrel{\dagger}{\longrightarrow}$
toc Command generator able to create different condition of command (step, impulse, periodical function, ..)

The pictures are the toolbar's icons, which start these different functions.

1.3 Update firmware with 2000WU

Connect RS232 Drive connector to the COM1 of the computer with a AT-Link cable. Verify that the axis selector is on 0 .
Start the application with a double click on it's icon.

- If « Drive Offline» indication appears in the toolbar, the drive is not connected at the serial port COM1, then check the connection and if necessary, change the serial port by starting «Serial link.. » in the menu « Configuration ». To check the connection again, start « Drive information.. » in the « U tilities » menu.
- If «COM1 already used » message appears, the serial port COM1 is already used by a driver (maybe the mouse driver). In this case «Serial link» window appears automatically and it is possible to change the serial port (COM1, COM2, COM3 or COM4, the configuration is saved for a next start of the application when the «Close » button is clicked).

If the drive is correctly connected, the drive type appears below DRIVE in the grey box at the right of the toolbar. To uploading, click on the icon included in the toolbar. Message WAITING FOR DRIVE RESPONSE appears, and if the drive is correctly connected, it disappears after a few seconds. Then, a click on the SEARCH FILE button enable the search of the update file (i.e. IRT2007.HEX) in the system (on the hard disk or on a disk). After selection of the file a click on the TRANSFER PROGRAM INTO DRIVE button start the update of the firmware or a click on the COMPARE WITH DRIVE CONTENTS button enable the check of the FLASH memory contents.

1.4 Change parameters values with 2000WU

Similarly to the firmware update, the Drive must be ONLINE, if not, read the first part of the firmware update procedure.

Click on the icon to start the DRIVE PARAMETERS UTILITY window. it is now possible to read or write parameters values.

The values are given in three different numbers; decimal value, hexadecimal value and meaning value. The decimal and the hexadecimal value are the real internal value of the drive (16 bit), and the meaning is a corrected value with a unit. Only a few parameters have a meaning value. For the others, meaning value is the same as the decimal value, without unit.

To change parameter value, use the scroll bar to move the grid on the parameter, click on the value that you want to modify, edit it and strike ENTER key.
There are three possibilities to write the value :

- Decimal (i.e. : 15567 or -23203)
- Hexadecimal (i.e. : (800)h)
- Meaning value(i.e. : 8 A or 8)

When the ENTER key is pressed, the value is sent to the drive and is read again for checking the modification.

A click on the SAVE PARAMETERS IN DRIVE button stores all parameters in the FLASH memory of the drive.

2. Serial Link

2.1 Dialogue protocol

This protocol is used to exchange data between computer or CNC and one axis (RS232, min 3 wires) or several axes (max. 15, RS485, 5 wires in parallel).

In RS485, all axes are listening, while answer is given only by concerned axis, other transmitters being in tristate

Orders format :

<STX><ADDRESS><COMMAND><PARAM1><PARAM2><PARAMn><ETX><BCC>

Explications:

<STX> Start of text.
<ADDRESS> Axis address.
The address is given in ASCII (address + 48)
<COMMAND> Command to execute.
<PARAM1> Address parameter or command complement. For the address, address value +48 .
<PARAM2..n> Optional parameters.
If data, 4 digits hexadecimal value.
<ETX> End of text.
$\begin{array}{ll}\text { <BCC> : } & \text { Block check } 8 \text { bit } \\ & \text { <STX > XOR <ADRESS> XORXOR <ETX> }\end{array}$

Commands list:

Read parameter
Write parameter
Reset hardware
Store in FLASH
"R" address
"W" address + parameter
"CH"
"ST"

Answers format :

<STX><ADDRESS><COMMAND><PARAM1><PARAM2><PARAMn><ETX><BCC>

or
<ACK>
or
<NAK>

The answers are different depending on received command :

Write parameter :
Command: No Axis Write Address Data
Answer: ACK if order understood and executed
NAK if BCC wrong and No Axis OK

Read parameter :
Command: No Axis Read Address
Answer: No Axis Read Address Data
NAK if BCC wrong and No Axis OK

2.2 Dialogue examples

Command	Drive answer
Read parameter no 11 axis no 2	Parameter no $11=27=(1 \mathrm{~B}) \mathrm{h}$
$\{02\}\{50\}\{82\}\{59\}\{03\}\{90\}$	$\{02\}\{50\}\{82\}\{59\}\{48\}\{48\}\{49\}\{66\}\{03\}\{41\}$
Write 127 the parameter no 28 of axis no 13	ACK
$\{02\}\{61\}\{87\}\{76\}\{48\}\{48\}\{55\}\{70\}\{03\}\{86\}$	$\{06\}$
Store parameters in FLASH of axis no 2	Nothing
$\{02\}\{50\}\{83\}\{84\}\{03\}\{52\}$	

Chapter C - Drive Parameters

1. Parameters description

The 208 parameters of the drive are divided as follows :

Parameter address	Description	Access
$0 . .5$	Motor parameters.	Read/write Parameters
$6 . .40$	Installation parameters.	
$41 . .45$	Scope parameters.	
$48 . .53$	Command parameters.	
$60 . .63$	Internal register (for tests,..).	
64.95	Status parameters.	Read only parameters
100.. 179	Scope values.	
180.. 207	Diverse parameters	

For a few read/write parameters, a change of the value by a write order isn't directly considered. An indication is given in the «ST. » column for the read/write parameters :

- C : compute order must be sent to the drive to consider the change of the parameter (only for SSI)
- S : « Store parameters in FLASH » must be sent to the drive, for it to consider the change.
- Nothing: the change is directly considered.

Other abbreviations :

- R/W : read/write parameter.
- R : read only parameter.
- O : optional parameter (depend of firmware)
- n.i : parameter not included at this time.
- RPM : round per minute (speed units)

Important :

When VXXX \rightarrow (i.e. V2005 \rightarrow) is indicated in the table, the function is only avaible with specified firmware version (i.e. version 2005) or higher version.

1.1 Global list of parameters

Addr.	St.	R/W	Unit	Limits	Description	Example	Detail
0	S	R/W	-	$1 . .6$	Pair of motor poles		pg 35
1		R/W	$1 / 2^{16}$ turns	8000h..7FFFh	Resolver shift angle	$16384 \Leftrightarrow 1 / 4$ turn	pg 35
2	S	R/W	-	0,1	Motor Thermostat n / o or n / c		pg 35
3		R/W	$\frac{1}{7 F F F_{h}} \cdot I_{\text {MAX_DRIVE }}$	0..7FFFh	Maximum motor current	$\begin{aligned} & \text { With } I_{\text {MAX_DRIVE }}=20 \text { A }_{\text {RMS }} \\ & 1998 \Leftrightarrow 12.2 \text { A }_{\text {RMS }} \end{aligned}$	pg 35
4	S	R/W	$\frac{1}{7 F F F_{h}} \cdot I_{M A X_{-} \text {DRIVE }}$	0..3FFFh	Nominal motor current	$\text { With } I_{\text {MAX_DRIVE }}=20 \text { ARMS }$ $10322 \Leftrightarrow 6.3 \mathrm{~A}_{\mathrm{RMS}}$	pg 35
5	S	R/W	ms	10..7FFFh	I^{2} t motor limited to maximal drive $\mathrm{I}^{2} \mathrm{t}$	$8500 \Leftrightarrow 8500 \mathrm{~ms}$	pg 36
6		R/W		$1 . .1000$	Current loop Proportional gain (Kp)		pg 46
7		R/W		$0 . .100$	Current loop Integral gain (Ki)		pg 46
8		R/W		0..7FFFh	Current loop Differential gain (Kd)		pg 47
9		R/W	$\frac{0.1 \text { Electric degree }}{1^{\prime} 000 \text { RPM }}$	$0 . .100$	Phase advance	$12 \Leftrightarrow 1.2^{\circ}$ electric at 1000 RPM	pg 47
10		R/W	$\frac{1}{7 F F F_{h}} \cdot I_{M A X-D R I V E}$	-1,0..7FFFh	External I-limit/Loop select V2005 \rightarrow negative value enable the selection speed or current loop.	$\begin{aligned} & \text { With } \mathrm{I}_{\text {MAX_DRIVE }}=20 \mathrm{~A}_{\text {RMS }} \\ & 5161 \Leftrightarrow 3.2 \mathrm{~A}_{\text {RMS }} \end{aligned}$	pg 42
11		R/W					
12		R/W	$1 / 8000{ }_{\text {h }}$	6000h...A000h	Adj.factor sine/cosine	$35234 \Leftrightarrow$ Factor 1.075	pg 37
13	0	R/W	-	0,1	Power down back-up		pg 43
14	S	R/W	-	$0 . .3$	Encoder Input configuration bit0:encoder inputs direct to output bit1:count reset on Z input		pg 40

Addr.	St.	R/W	Unit	Limits	Description	Example	Detail
15		R/W					
16		R/W					
17	S	R/W	1/revolution	1.. 2048	Encoder resolution 1025.. 2048 : Extrapolated resolution	$234 \Leftrightarrow 234$ pulse by revolution	pg 39
18	S	R/W	-	$0 . .6$	Encoder marker pulse width $0: 1 / 4$ period channel A, gated $B \backslash$. $1: 1 / 2$ period channel A, gated $B \backslash$. 2: 1 period channel A, gated $B \backslash$. $4: 1 / 4$ period channel A, gated $A \backslash(V 2005 \rightarrow)$ $5: 1 / 2$ period channel A, gated $A \backslash(V 2005 \rightarrow)$ 6: 1 period channel A, gated A $\backslash(V 2005 \rightarrow)$		pg 39
19		R/W	$1 / 2^{16}$ turns	8000..7FFFh	Encoder marker pulse position	$8192 \Leftrightarrow 1 / 8$ turns	pg 39
20		R/W		1..7FFFh	Speed loop Proportional gain		pg 48
21		R/W		0..7FFFh	Speed loop Integral gain		pg 48
22		R/W		0..7FFFh	Speed loop Differential gain		pg 48
23	S	R/W	0.925 or 1.85 RPM	-8191.8191	Maximum speed (for 10V input) depends of encoder resolution	$\begin{aligned} & 3200 \Leftrightarrow 2960 \text { or } \\ & 5920 \text { RPM } \\ & \hline \end{aligned}$	pg 37
24	S	R/W	-	$0 . .3$	End limit switches n / o or n / c V2005 \rightarrow : Bit 15 enable special function (see detail page)		pg 41
25	S	R/W	-	$0 . .3$	Direction stop		pg 41
26		R/W	-	0,1	Speed or Current loop control 0: Speedloop 1: Currentloop		pg 44
27		R/W	-	0,1	Digital, analogue or other command 0 : Digital 1: Analogue 2 : Other command		pg 44

Addr.	St.	R/W	Unit	Limits	Description	Example	Detail
28		R/W	$\frac{1}{7 F F F_{h}} \cdot V_{M A X}$	-255.. 255	Analogue command offset with speedloop control	$\begin{aligned} & \text { With } V_{\text {max }}=3000 \text { RPM } \\ & 22 \Leftrightarrow 2 \text { RPM } \end{aligned}$	pg 44
			$\frac{1}{7 F F F_{h}} \cdot I_{\text {MAX_DRIVE }}$		Analogue command offset with currentloop control	$\begin{aligned} & \text { With } I_{\text {MAX DRIVE }}=10 \mathrm{~A} \\ & 33 \Leftrightarrow 0.01 \mathrm{~A} \end{aligned}$	
29		R/W	55.6 RPM/s	0,1..7FFFh	Command Slope 0 : No ramp	$\begin{aligned} & 100 \Leftrightarrow 556 \text { RPM } / \mathrm{s} \\ & 0 \Leftrightarrow \text { No ramp } \end{aligned}$	pg 45
30	S	R/W	-	0,2	Monitoring Relay Rdy/Ala/Ena 0 : Relay-Ready (Alarm inverted) 1 : Relay-Alarm 2 : Relay-Enable (V2005 \rightarrow)		pg 42
31	n.i.	R/W	-	0,1,2	Enable hardware/serial/edge		
32		R/W	ms	$0 . .32000$	Watchdog software communication (V2005 \rightarrow)		pg 43
33	S	R/W	-	0..FFFFh	Alarm latch		pg 42
	Bit		Description				
	0		Latch alarm 7 (over or under voltage alarm)				
	2		Latch alarm d (earth fault)				
	4		Latch alarm 2 ($\left.\mathrm{l}^{2} \mathrm{t}\right)(\mathrm{V} 2005 \rightarrow$)				
	6		Latch alarm b (over speed)				
34		R/W	REV/4096	$0 . .256$	Encoder dead window (V2005 \rightarrow)	$\begin{aligned} & 5 \Leftrightarrow \text { dead window }=5 \\ & \text { REV/4096 } \\ & \hline \end{aligned}$	pg 39
35		R/W	ms	0,1.. 136	Motor brake delay (V2005 \rightarrow)	$0 \Leftrightarrow$ Motor brake inactive $20 \Leftrightarrow 20 \mathrm{~ms}$ delay	pg 43
36		R/W					
37		R/W					
38	0	R/W	-	0,32	SSI number total of bit		
39	0	R/W		0,20	SSI number of bit per revolution		

Addr.	St.	R/W	Unit	Limits	Description	Example	Detail
40	0	R/W	$\begin{aligned} & \text { Compute period } \\ & (\sim 132 \text { us }) \\ & \hline \end{aligned}$	$0 . .32000$	IU/CU cyclic transmit period	$1504 \Leftrightarrow 200$ ms period	pg 41
41		R/W			Scope parameter		pg 19
42		R/W			Scope parameter		
43		R/W			Scope parameter		
44		R/W			Scope parameter		
45		R/W			Scope parameter		
46		R/W			Scope options		
47		R/W					
48	0	R/W	-	0..FFFFh	IU/CU command		pg 42
49	0	R/W	-	$0 . .255$	Cyclic parameter address		pg 42
50		R/W	0.925/4 RPM	8000..7FFFh	Digital command with Speedloop control	$13838 \Leftrightarrow 3200$ RPM	pg 44
			$\frac{\sqrt{2}}{7 F F F_{h}} \cdot I_{\text {MAX_DRIVE }}$	8000..7FFFh	Digital command with Currentloop control	with $I_{\text {MAX_DRIVE }}=20 \mathrm{~A}_{\text {RMS }}$ $6226 \Leftrightarrow 3.8 \text { A }_{\text {RMS }}$	
51		R/W	-	$0 . .255$	Status display 7 segment value 0 : Internal status, other values: bit $7=$ DP, bit $6 . .0=$ SEG A..G	$\begin{aligned} & 146 \Leftrightarrow \text { DP + SEGMENT_F } \\ & + \text { SEGMENT_C } \end{aligned}$	pg 44
52		R/W	revolution	0..FFFFh	Motor revolutions counter		pg 44
53	0	R/W	-	0..FFFFh	Encoder input counter		pg 41
54		R/W			Parameter for asynchronous motors		Ch. E
55		R/W			Parameter for asynchronous motors		Ch. E
56		R/W			Stepper function parameter		apart
57		R/W			Profile \& stepper function parameter		apart
58		R/W			Profile \& stepper function parameter		apart
59		R/W			Profile \& stepper function parameter		apart
60		R/W			Internal register		
61		R/W			Internal register		

Addr.	St.	R/W	Unit		Limits	Description		Example	Detail
62		R/W				Intern	register		
63		R/W				Intern	register		
64		R				Status	gister		
	Bit		Description				Drive display		
	0		Fault Int : Over	er vo	of DC Bus				
	1		FO N						
	2		FO UP		dule faut				
	3		FO VP		er Tem				
	4		FO WP						
	5								
	6		Setup mode						
	7		End-switch or did	nto					
	8		Thermostat mo						
	9		V6 OK						
	10		End-switch 1						
	11		End-switch 2						
	12		Power down						
	13		External I-limit/	elect					
	14		AC fail						
	15		Enable/disable				0/1		
65		R				Alarm	gister		
	Bit		Description				Drive display		
	0		Fault Int: Over	er vo	alarm		7		
	1		Power module				6		
	2								
	3		Internal over tem	ture			4		
	4		$1^{2} \mathrm{t}$ (only if latch				2		
	5		Resolver fault				5		
	6		Over Speed				b		
	7		Motor link faul				C		
	8		Thermostat mo				3		
	9		Over braking				h		
	10		Over speed asy	nous			u		
	11								
	12		Position error (Stepp	nctions)		PA, A		
	13		Software watch				9		
	14		Firmware not OK				F		
	15		Parameters not				E		

Addr.	St.	R/W	Unit	Limits	Description	Example	Detail
66		R	${ }^{\circ} \mathrm{C}$		Heatsink temperature	$32 \Leftrightarrow 32{ }^{\circ} \mathrm{C}$	
67		R	$\frac{2 \sqrt{2}}{7 F F F_{h}} \cdot I_{M A X X_{-D R I V E}}$	8000h..7FFFh	Instantaneous motor current	With $I_{\text {MAX_DRIVE }}=20$ A $_{\text {RMS }}$ $7241 \Leftrightarrow 12.5$ Apeak	
68		R	0.925 RPM	8000h..7FFFh	Instantaneous motor speed	$2667 \Leftrightarrow 2467$ RPM	
69		R	$1 / 2^{16}$ turns	0..FFFFh	Resolver position within a revolution	$4096 \Leftrightarrow 1 / 16$ turn	
70		R					
71		R	-	$1 . .15$	Axis address		
72		R	-		Monitor Version		
73		R	-		Firmware Version		
74		R	-		FPGA Version		
75		R					
76		R					
77		R					
78		R	-		Type of Hiperface alarm	Available only with the	
		Bit	Description			Hiperface feedback	
		0	Type of encoder unk	wn			
		1					
		2	SIN + COS out of ran				
		3	Timeout RS485 Hipe				
		4	Position error				
79		R					
80		R					
81		R					
82		R			Fan switch on temperature	$40 \Leftrightarrow$ Fan switch on at $40^{\circ} \mathrm{C}$, switch off at $35^{\circ} \mathrm{C}$	
83		R			Control Unit ID		
84		R			Commutation dead time		
85		R			Options 2		

Addr.	St.	R/W	Unit	Limits	Description	Example	Detail
86		R	$\mathrm{A}_{\text {RMS }}$		Maximum drive current (1 ${ }_{\text {MAX _ DRIVE }}$)	$20 \Leftrightarrow 20 \mathrm{~A}_{\text {RMS }}$	
87		R	$\mathrm{A}_{\text {RMS }}$		Nominal continuous drive current	$10 \Leftrightarrow 10 \mathrm{~A}_{\text {RMS }}$	
88		R	ms		Maximum drive $\mathrm{I}^{2} \mathrm{t}$		
89		R	-		Power modules		
90		R	$\mathrm{V}_{\text {RMS }}$		Line voltage input	$400 \Leftrightarrow 400 \mathrm{~V}_{\text {RMS }}$	
91		R	-		Options 1		
92		R	-		Hardware version		
93		R	-		Delivery date	$1497 \Leftrightarrow$ week 14 in 1997	
94		R	-		Customer		
95		R	-		Serial Number		
96		R	-		Firmware abilities		
		it	Description				
		0	Asynchronous motor				
		1	High speed (>6000 r	, until 12000			
		3	Stepper function				
		0	Software limits				
		1	Hiperface				
		3	EnDat				
		4	Setup tools				
97		R	$\frac{-10}{7 F F F_{h}} \mathrm{v}$	8000..7FFFh	External analogue command 10V		
98		R	$\frac{2.5}{7 F F F_{h}} v$	8000..7FFFh	External analogue command 2.5V		
99		R	see parameter 50		Internal digital command		
100	0	R			Scope values		
...	0	R			Scope values		
179	0	R			Scope values		

Addr.	St.	R/W	Unit	Limits	Description	Example	Detail
180		R	$35 \mu \mathrm{~V} / \mathrm{bit}$		Resolver Sine		
181		R	$35 \mu \mathrm{~V} / \mathrm{bit}$		Resolver Cosine		
182		R	$\frac{2 \sqrt{2}}{7 F F F_{h}} \cdot I_{M A X-D R I V E}$	8000..7FFFh	Current Command		
183		R					
184		R					
185		R	$\frac{2 \sqrt{2}}{7 F F F_{h}} \cdot I_{M A X-D R I V E}$	8000..7FFFh	Phase U current		
186		R	$\frac{2 \sqrt{2}}{7 F F F_{h}} \cdot I_{\text {MAX_DRIVE }}$	8000..7FFFh	Phase V current		
187		R	$\frac{2 \sqrt{2}}{7 F F F_{h}} \cdot I_{\text {MAX_DRIVE }}$	8000..7FFFh	Phase W current		
188		R					
189		R					
190		R					
191		R					
192		R			1^{2} t threshold		pg 36
193		R			Instant I ${ }^{2}$ t		pg 36

1.2 Scope parameters

Scope parameters :

5 parameters for scope settings (Address 41..45).
80 read only parameters for the measuring values (Address 100..179).

Use of scope function

When a time scale different of 0 is written, the drive starts the measurement, the parameters $100 . .179$ are filled cyclically with samples.
When trigger condition is satisfied, the drive saves the position (trigger position parameter) and continues the measurement during the number of post-trig samples defined. At the end of the measurements, time scale parameter is set to 0 to indicate the end.

Add		Description		Comment
41		Time scale		Factor of 133 us for the sampling time.
42	HB	Parameter 1 address (channel 1)		Address of parameter 1 to measure
	LB	Parameter 1 scale		Number of shift (left shift for positive value and right shift for negative value)
43	HB	Parameter 2 address (channel 2)		Address of parameter 2 to measure
	LB	Parameter 2 scale		Number of shift (left shift for positive value and right shift for negative value
44	HB	Slope positive/negative or null		null for no trigger
	LB	Trigger value		Threshold value
45	HB	Trigger position		Address where the trig point is (100..179)
	LB	Number of Post-trig samples		0 : 100 \% pretrig 80:0\% pretrig
46	Scope options (since firmware V2005)		bit $15=0 \rightarrow$ saturation (when values overshoot with the defined scale). bit $15=1 \rightarrow$ no saturation (for bit wise operations or low bits watching)	
100	HB	Value 1 of parameter 1		Measured value
	LB	Value 1 of parameter 2		Measured value
..				
179	HB	Value 80 of parameter 1		Measured value
	LB	Value 80 of parameter 2		Measured value

Chapter D - Setting to Work

1. Wiring

The wiring of the drive series 2000/4000 must be carried out according to the schematic in these instructions. Local wiring regulation must be observed.

Special attention should be paid with respect to wiring rules regarding ground, earth and neutral.

The earth wire to the drive, motor and housing must be as short as possible and connected to a common earth point.

The global wiring plan is represented in Figure 1 on page 21.

1.1 Cable lengths and cross-sections

Length of cable between drive and motor : max. 15 m.

The following table gives the minimal recommended cross-sections :

Drive type	Supply cable \& Motor cable AWG		Control signals cables mm^{2}	
AWG	$\mathbf{m m}^{\mathbf{2}}$			
$\mathbf{2 0 0 4} \mathbf{2 0 0 5} \mathbf{2 0 0 6} \mathbf{2 0 0 9 2 0 1 0}$ $\mathbf{4 0 0 3 4 0 0 5 4 0 0 9}$	14	2		
$\mathbf{2 0 2 0 4 0 1 5 4 0 2 5}$	12	24	0.14	
4050	10	5		

1.2 Global wiring plan

Figure 1-Global wiring plan
(1) Note:

DC BUS +/- and DC BUS CTRL terminals are not present when drive is equipped with « EMC filter » option.

1.3 Control unit wiring

XRESOLVER

CO 2

0	5	REFOUT
0	9	REFOUTB
0	4	COS1
0	8	COS2
0	3	SIN1
0	7	SIN2
0	2	TH.MOT1
0	6	TH.MOT2
0	1	

XSERIAL 232

DSUB9 MALE

XCOMMAND

XENCODER

Correct wiring of the resolver is the precondition for good and reliable operation of the servo-amplifiers series $2000 \& 4000$. Non-compliance of the instructions operations in this manual will cause a deterioration of the specified performances.

A cable with the following characteristics is needed :

- 3 pairs of conductors $0,14 \mathrm{~mm}^{2}$ twisted in pairs and shielded separately.
- 2 conductors of $0,5 \mathrm{~mm}^{2}$ shielded separately
- an overall shield contacted with the previous shields.

The cable wiring should be done as Figure 2.

The overall shield must be connected to both the motor and the amplifier. It should be noted that the contact from the overall shield to amplifier and motor must be made by using as much contact area as possible. The use of "Pig Tail" on the overall shield should be avoided. It is recommended to follow the convention (signal / conductor colour) used in this manual.

Contacts 2 and 6 are intended for the motor thermal switch wiring. The contact should be either of type normally closed, or of type normally open.
It should have the following characteristics :

$$
\begin{array}{ll}
\text { contact closed : } & 1 \mathrm{kohm} \\
\text { contact opened : } & 10 \mathrm{kohm}
\end{array}
$$

N.B. : Take care to the polarity with semiconductor temperature sensor.

Figure 2-Resolver and motor thermal switch wiring

1.3.2 XCOMMAND

Pin Nr.	Pin name	Function	Pin type

OPERATING MANUAL Drives 2000 \& 4000

1,5,11,13	GND	General purpose ground for digital input, output and reference for SPEED IN.	Power ground
2	SPEED IN+	Non-inverted differential input command Max input voltage +/- 20VDC Max differential input voltage $+/-10 \mathrm{~V}$ Differential input impedance : $8 \mathrm{k} \Omega$	Analogue input See note (1)
3	SPEED IN-	Inverted differential input command Max input voltage +/- 10VDC Max differential input voltage $+/-10 \mathrm{~V}$ Differential input impedance : $8 \mathrm{k} \Omega$	Analogue input See note (1)
7	EXTLIMI\}	Digital input for current limitation to the programmed value. Active low. Internal pull-up 4k7 to 5V.	Digital input
8,10	RDY1,RDY2	Potential free contact of the make contact relay. $24 \mathrm{VDC}, 0.5 \mathrm{~A}, 10 \mathrm{VA}$	Contact output
12	ENABLE	Passive ENABLE. Close this input to GND to active the power stage. Internal pull-up 4k7 to 5V.	Digital input
14	GND 24V	Ground of the active optocoupled ENABLE (potential free, max 50VDC to GND).	External ground
15	ENABLE 24V	Active optocoupled ENABLE. Max input voltage : 30 VDC (with respect to GND 24V) Active level : 20.. $30 \mathrm{VDC} / 5 \mathrm{k} \Omega$ (potential free, max 50VDC to GND)	Power input
19	END-SW1	Limit switch input affecting the positive speed command. Internal pull-up 4k7 to 5V. See note (2)	Digital input
20	END-SW2\}	Limit switch input affecting the negative speed command. Internal pull-up 4 k 7 to 5 V . See note (2)	Digital input
23	V60K	High if 6 V is internal powered. Output voltage 0.. 6 VDC, High Z Do not load with less than $10 \mathrm{~K} \Omega$	Digital output
24	V6BACKUP	External 6V power supply input for the CU and optional IU boards. Supply voltage: 6.. 7 VDC Supply current : 500 mA max + IU current.	Power input
25	GND	Ground for the external 6V power supply.	Power ground

Pins $4,6,9,16,17,18,21,22$ are not used.
(1) Common mode voltage range (CMVR) +/-10V if common on SPEED IN-
(2) Close this input to GND to inhibit or to free the movement (depend of parameter 24 configuration).

The on-board relay is normally open contact. The rating of his contact is as follows: 24 V - 0,5 A - 10 VA

1.3.3 XENCODER

The connector XENCODER provides simulated encoder signals and allows to read signals coming from an external encoder.

Pin Nr.	Pin name	Function	Pin type
$1,2 \& 12$	GND	Internal ground of the CU board	Power ground
3	Al	Non-inverted impulse A input	Differential input
4	$\mathrm{AI} \backslash$	Inverted impulse A input	Differential input
5	BI	Non-inverted impulse B input	Differential input
6	Z	Inverted zero impulse output	Differential output
7	Z	Non-inverted zero impulse output	Differential output
8	$\mathrm{~B} \backslash$	Inverted impulse B output	Differential output
9	B	Non-inverted impulse B output	Differential output
10	$\mathrm{~A} \backslash$	Inverted impulse A output	Differential output
11	A	Non-inverted impulse A output	Differential output
13	$\mathrm{BI} \backslash$	Inverted impulse B input	Differential input
14	ZI	Non-inverted zero impulse input	Differential input
15	$\mathrm{ZI} \backslash$	Inverted zero impulse input	Differential input

Simulated incremental encoder signals provided on connector XENCODER:

The provided signals A, A / B, B / Z, Z / and GND are similar to the signals of an incremental encoder signal with differential outputs. The line driver used on-board is type 75172. The line receiver of the position controller should be type 75175.
These signals are always present and do not require any external supply.

Incremental encoder signals read on connector XENCODER:

The read signals $\mathrm{Al}, \mathrm{Al} / \mathrm{BI}, \mathrm{Bl} / \mathrm{ZI}, \mathrm{ZI}$ and GND are interpreted as incremental encoder signals with differential outputs. The line receiver used on-board is type 75175.

Encoder cable wiring:

The GND signal should be common to the position controller and to the servo-amplifier.

The cable connecting the position controller to the servo-amplifier should be shielded with twisted pairs for differential input and output. The shield must be connected to both the position controller and the amplifier. It should be noted that the contact from the shield to the metallic case of the amplifier plug-in connector (XENCODER) and the contact from the shield to the position controller metallic cabinet must be made by using as much contact area as possible. The use of "Pig Tail" on the shield should be avoided.

1.3.4 XSERIAL 232 and XSERIAL 485

The serial link is used to set or monitor drive parameters stored in non-volatile memory using the configuration program.
The serial links could be also used to down-load an up-dated firmware or an other firmware version.

Pin-out of the RS232 connector (XSERIAL 232)

Pin Assignment for Serial Port on the Drive		Pin Nr. for Serial Port on P.C.		
Pin Nr.	Pin name	Function	9-Pin connector	25-Pin Connector
$1,6,7,8 \& 9$	N.C.	Not connected (potential free).		
2	RX232	Transmit Data output	3	2
3	TX232	Receive Data input	2	3
4	RTS	Request To Send output	$6 \& 8$	$6 \& 5$
5	GND	Common ground	5	7

The minimal wiring of the RS232 serial cable is as follows:

Pin-out of the RS485 connector (XSERIAL 485)

Pin Nr.	Pin name	Function
$\mathbf{1}$	TX485	Non-inverted Transmit Data output
$\mathbf{2}$	TX485\} $&{\text { Inverted Transmit Data output }} \\ {\hline \mathbf{3}} &{\text { RX485 }} &{\text { Non-inverted Receive Data input }} \\ {\hline \mathbf{4}} &{\text { RX485 }} &{\text { Inverted Receive Data input }} \\ {\hline \mathbf{5 ~ \& ~ 6}} &{\text { GND }} &{\text { Common ground }} \\ {\hline}$	

1.3.5 Axis selector

RS232 link

The axis selector must be on « $0 »$, the drive replies to RS232 messages sent to address Nr.1.

RS485 link

The axis selector defines the axis number of the drive, from address 1 to 15 . The drive will reply to RS485 messages sent to the corresponding address (Axis selector on $5 \Rightarrow$ drive reply to messages sent to address Nr. 5).

Notes:

- When the drive does not include the RS485 option (axis selector nonexistent), only the RS232 link is usable (message constituted with address Nr.1).
- See Dialogue protocol description, page 8, to know the way for the construction of messages.
- The drive must be resetted (send of Reset order or switch Power OFF/ON) to enable a change of the selector position.
- A firmware upgrade is only possible with a RS232 link.

Exception : when drive is programmed with a monitor version 300_{h} (or higher), the firmware update is also possible by RS485 (the parameter 72 indicates the monitor version).

1.4 Power Connectors

1.4.1 Mini drive type 2004

The power and motor connectors are Weidmüller, BLZ 7.50/3B and BLZ 7.50/4B (7.5 size).

Safety note: For safety use, XMOT must always be connected.

1.4.2 Mini drive types 2006 and 2009

The power and motor connectors are Weidmüller BLZ 7.50/4B (7.5 size).

Safety note: For safety use, XMOT must always be connected.

1.4.3 XMOT Connector for Small and Medium drives

XMOTOR
 CONNECTOR

Pin Nr.	Pin Name	Function	Pin Type
1	MOTOR PHASE U	Motor terminal	Power Output
2	MOTOR PHASE V	Motor terminal	Power Output
3	MOTOR PHASE W	Motor terminal	Power Output
4	SHIELD	Motor cable shield and PE	
5	$24 V$ (option)	External Power 24VDC Max input voltage $: 30 \mathrm{VDC}$	Power Input
6	MOTOR BRAKE (option)	Motor Brake terminal Max output current : 2.5A	Output
7	COMMON 24V (option)	Ground for the external 24VDC and for motor brake	Power Ground

Note :

See Motor brake delay parameter description, page 43, for more information about Motor brake.

1.4.4 Determining the motor phases (without drive)

Important :

This operation will be done only when the three-phase motor order is unknown (motor prototype or no documentation).

A DC supply of about 3 A is necessary for this operation.

The procedure is as follows :

1. Determine arbitrarily phase \mathbf{U} as one of the 3 motor phases.
2. Connect \mathbf{U} to «+» and a $\mathbf{2}^{\text {nd }}$ phase motor to «-» of the DC supply.
3. Switch supply on. The shaft will move to a stable position.
4. Mark the new shaft position with a pencil, at top center.
5. Switch supply off, disconnect the «-» from the $\mathbf{2}^{\text {nd }}$ motor phase and reconnect the «-» to the $\mathbf{3}^{\text {rd }}$ motor phase. Switch supply on and observe the axis rotation direction (report the direction in the table below).
6. Mark with a pencil the new shaft axis position.
7. With the help of the table below, determine the 2 unknown motor phases :

Sense of axis rotation	$\mathbf{2}^{\text {nd }}$ Motor phase	$\mathbf{3}^{\text {rd }}$ motor Phase
Clockwise	V	W
Anti-clockwise	W	V

When this operation is done, it is important to define the resolver shift angle parameter (P1), see section 4.1 of chapter D.

2. Display indications

The display shows the state of the drive and of the motor.

Drive in function torque enable
Drive in function

 Drive in function
 torque disable

Drive in function
torque disable and zero position

End limit switch 2 activated.
The negative speed command is affected.

End limit switch 1 activated.
The positive speed command is affected.

The decimal point is « ON » when the motor turns clockwise

The decimal point is « OFF » when the motor turns anti-clockwise

If the decimal point lights up during anti-clockwise rotation, wires S1 (COS1) and S3 (COS2) of resolver connector must be inverted (see section 1.3.1 of chapter D).

2.1 Alarms

The alarm H has the most priority (following $\mathrm{F}, \mathrm{E}, 9, \mathrm{C}, \mathrm{h}, 7,6,5, b, 4,3,2$). If some alarms takes place simultaneously, only the one with the higher priority will be displayed.

Over speed when 125% of max. motor speed is reached.
(only if latched)

Motor link fault

Parameters not OK

Firmware not OK

Hardware incompatibility
blinking

 Over braking

Software watchdog

Over or under voltage

The Parameter 33 (Alarm latch) allows you to define which alarm must be latched.

2.2 Warnings

R
Over current, appears during 1 sec when 120% of maximum drive current is reached (bad regulation parameters).

$I^{2} t$ reached. (if not latched)

3. Parameters settings

3.1 Motor parameters

These parameters depend on the connected motor characteristics. This information is generally indicated on rating plate of the motor or given in the motor data sheet.

Pair of motor poles, Address 0

This parameter must contain the number of motor poles pair. This number can be between 1 and 6 pairs.

Resolver shift angle, Address 1

This value correspond to shift angle between the resolver signal and the motor, from - $1 / 2$ turn to $+1 / 2$ turn. The zero value means a ideal combination between the resolver and the motor. See also section 4.1 of chapter D (How to set the resolver shift angle parameter, page 50)

Motor Thermostat n/o or n/c, Address 2

Type of thermal switch included in the motor, 1 for a normally closed contact and 0 for a normally open contact. Closed and opened contact features :

- contact closed: $<=1 \mathrm{k} \Omega$
- contact opened: $\quad>=10 \mathrm{k} \Omega$

Maximum motor current, Address 3

The maximum motor current value is given to the drive with the following equation :

$$
\frac{I_{\text {MAX_MOTOR }} \cdot 7 F F F h}{I_{\text {MAX_DRIVE }}}
$$

$I_{\text {max_drive }}$ AND $I_{\text {max_motor }}$ in Arms.
This value must be between 0 and 7FFFh, that mean between 0 and $I_{\text {max_Drive }}$

Nominal motor current, AdDress 4

The nominal motor current value is given to the drive with the following equation :

$$
\frac{I_{\text {NOMINAL_MOTOR }} \cdot 7 F F F h}{I_{\text {MAX_DRIVE }}}
$$

With $I_{\text {max_drive }}$ AND $I_{\text {nominal_motor }}$ in $A_{\text {rms }}$.
This value must be between 0 and $3 F F F h$, that mean between 0 and $I_{\text {nominal_drive }}$

I2t MOTOR, Address 5

The $I^{2} t$ motor (P5) is defined as elapsed time in « $m s$ » when $I^{2} t$ value progresses from zero to $I^{2} t$ threshold (P192) when drive current equals the double of nominal current (P4).

I^{2} t evolution for $I_{I N S T}=I_{\text {NOM }}$ and $I_{I N S T}=2 \cdot I_{\text {NOM }}$:

Instant 12t, Address 193 :

Instant $I^{2} t(P 193)$ is the instantaneous value of the $I^{2} t$. In comparison of the $I^{2} t$ threshold, this parameter gives an information about motor load.

12t threshold, Address 192 :

The $I^{2} t$ threshold (P192) is defined as equal to the $I^{2} t$ value when continuous drive current equals nominal current.

$I^{2} t$ warning (if I^{2} t not latched) :

When $I^{2} t$ value reaches the $I^{2} t$ threshold, the maximal current is limited to nominal current and 2 is displayed while $I^{2} t$ value is higher than $I^{2} t$ threshold.

$I^{2} t$ alarm (if $I^{2} t$ latched) :

The drive power stage is disabled when the $I^{2} t$ value reaches the $I^{2} t$ threshold and 2 is displayed.

The instant $I^{2} t$ in comparison of $I^{2} t$ threshold can be observed on the Scope of the user software. This method is useful to determine and to check the $I^{2} t$ value and the motor load.

Maximum speed (for 10V input), Address 23

Maximum motor speed, this value is generally indicated on the rating plate of the motor.

Divide the RPM value by 0.925 to obtain the drive value if parameter P17 (encoder resolution) is bigger as 1024.
Divide the RPM value by 1.85 to obtain the drive value if parameter P17 (encoder resolution) is smaller as 1025 .

For analogue command mode, this value fixes the speed range (max input voltage correspond to this speed).

The over speed alarm is activated (if latched) when the motor speed value is equal to or higher than 125% of the maximal speed value.

AdJ.fACTOR SINE/COSINE, AdDRESS 12

Asymmetric resolver adjustment :
factor = maximum cosine value / maximum sine value
Parameter $12=8000 \mathrm{~h} \cdot$ factor ($6000 \mathrm{~h} . . . \mathrm{A} 000 \mathrm{~h} \Rightarrow$ factor $=0.75$.. 1.27)
The windows user software allows you to compute automatically this factor by a double click on the value of parameter 12 in the «Parameters values » window (just move motor position to each maximum values of sine and cosine).

3.1.1 Example of motor parameters

Example with DRIVE type 2010

Motor features (example):

Poles pairs	4	
Nominal Current	6.68	A
Nominal Power	1.320	kW
Max. Speed	3000	RPM

Drive type 2010 features :

$$
\begin{aligned}
& \mathrm{I}_{\text {NOM_DRIVE }}=10 \mathrm{~A} \\
& \mathrm{I}_{\text {MAX_DRIVE }}=20 \mathrm{~A}
\end{aligned}
$$

\{ PAIR OF MOTOR POLES, ADDRESS 0$\} \Leftarrow 4$

\{ Resolver shift Angle, Address $\mathbf{1}\} \Leftarrow \mathbf{0}$

Supposition : ideal combination between the resolver and the motor.

\{ Motor Thermostat n/o or n/c, Address 2 \} $\Leftarrow 0$

Thermostat motor normally opened.

\{ Maximum motor current, Address $\mathbf{3}\} \Leftarrow 21790$

With maximum motor current equal at the double of the nominal current.

$$
\frac{\begin{array}{l}
I_{\text {MAX_MOTOR }}=13.3 \mathrm{~A} \\
I_{\text {MAX_MOTOR }} \cdot 7 F F F h \\
I_{\text {MAX_DRIVE }}
\end{array}=\frac{13.3 \cdot 7 F F F h}{20}=21790=551 E h ~}{2}
$$

\{ Nominal motor current, Address 4 \} $\Leftarrow 10945$

\{ I2T MOTOR, ADDRESS 5 \}

\{ Maximum SPEed (for 10V input), Address $\mathbf{2 3}\} \Leftarrow 3243$
$\mathrm{n}_{\text {MAX }} / 0.925=3000 / 0.925=3243.2$

3.2 Installation parameters

3.2.1 Encoder configuration

Encoder resolution, Address 17.

Number of pulses for one revolution, between 1 and 2048 pulses per revolution.
For 1025 to 2048 pulses per revolution, it is an extrapolated resolution.

Encoder marker pulse width, Address 18.

Width of the encoder marker pulse :
$0: 1 / 4$ period of encoder output channel A, gated $B \backslash$.
$1: 1 / 2$ period of encoder output channel A, gated $B \backslash$.
$2: 1$ period of encoder output channel A, gated $B \backslash$.

Firmware version 2005 or higher :

$4: 1 / 4$ period of encoder output channel A, gated $A \backslash$.
$5: 1 / 2$ period of encoder output channel A, gated $A \backslash$.
$6: 1$ period of encoder output channel A, gated $A \backslash$.

Encoder marker pulse position, Address 19.

Defines the shift between the marker pulse position and the position zero, between $-1 / 2$ and $+1 / 2$ turn. To shift of $1 / x$ turn enter value $2^{16} * 1 / x$.

Encoder Dead window, Address 34.

Firmware version 2005 or higher :

Width of the dead window for encoder simulation.
0 : No dead window
1..xx : Dead window width in REV/4096.

Example : The motor position oscillates from $\pm 1 / 4096$ revolution.
Without dead window : the encoder outputs change continually (± 1 inc.).
With a dead window programmed to 3 , the encoder simulation signals will be steady. This function is useful to reduce vibrations and noises in a system, but be careful that the position precision is also reduced. The position error is not cumulative.

ENCODER OUTPUT SIGNALS EXAMPLE :

Encoder marker pulse width = 1
Encoder Marker pulse position = 0

With a positive speed (display dot off) :

Encoder Input configuration, Address 14 (option).

Options for the encoder input, bit 0 and 1 must be set to change the encoder input configuration :

Encoder input counter, Address 53 (option).

Value of the encoder input counter. This value is incremented or decremented in accordance with the encoder input signal.

3.2.2 End-switch configuration

Limit end-switch 1 affects the positive speed command, end-switch 2 affects the negative speed command

End limit switches n/o or n/c, Address 24

End-switch 1 and 2 type, normally opened or closed contact :

	$\mathbf{0}$	$\mathbf{1}$
End-switch 1 (bit 0)	normally opened	normally closed
End-switch 2 (bit 1)	normally opened	normally closed

Firmware version 2005 or higher :

Special End-switch function :
Bit $15=0 \rightarrow$ End-switches standard function.
Bit $15=1 \rightarrow$ End-switch 1 input clears the integral gain of speed loop.

DIRECTION STOP, ADDRESS 25

Stop any direction by changing this value :

	0	1
bit 0	No effect	Positive speed command stopped
bit 1	No effect	Negative speed command stopped

3.2.3 SSI configuration (option)

IU/CU CYClic transmit period, Address 40 (OPtion).
Period for SSI data transmission.

IU/CU COMMAND, AdDRESS 48 (OPTION).

SSI internal register.

Cyclic parameter address, Address 49 (option)
SSI internal parameter.

3.2.4 General configuration

Monitoring Relay Rdy/Ala/Ena, Address 30.

$\mathbf{0}$: Relay ready, the relay is activated at power up and it is deactivated when an alarm is set (Relay alarm inverted).
1: Relay alarm, the relay is activated only when an alarm is set.

Firmware version 2005 or higher :

2: Relay enable, the relay is activated when the power stage of the drive is enabled

Alarm latch, Address 33.

Bit 0 : Alarm 7 Over or under voltage alarm
Bit 2 : Alarm d Earth fault
Bit 4 : Alarm $21^{2} \mathrm{t}$ (fimware version 2005 and higher)
Bit 6 : Alarm b Over speed
Set or clear these bits to activate or deactivate the latch of the corresponding alarm.

External I-LIMIt/LOOP SELECT, AdDress 10.

When the «EXTLIMI\» input (XCOMMAND/PIN 7) is closed to GND, this value becomes the maximum motor current (the value of parameter 3 is disregarded).

When P. $10=0$, the limitation of maximum current by external input is disabled.

Firmware version 2005 or higher :

When P. $10=-1$:
EXTLIMI input select the speed or current regulation loop :
EXTLIMI $=1 \rightarrow$ Speed loop.
EXTLIMI $=0 \rightarrow$ Current loop.

Motor brake delay, Address 35.

Firmware version 2005 or higher :

0 : \quad No command of motor brake
$1 . .136$: Motor brake is opened (off) when enable input switch ON. When enable input switch OFF, the motor brake is closed (on), speed command is forced to 0 and the power stage is disabled after $1 . .136 \mathrm{~ms}$.

Speed command forced to 0

WATCHDOG SOFTWARE COMMUNICATION, AdDRESS 32 .

Watchdog for the SSI link. If the drive does not receive any SSI data during the defined time (in ms), software watchdog alarm is set (if P. $32=0$: Software watchdog disabled).

Firmware version 2005 or higher :

When this value is different of 0 , the watchdog is enabled with the programmed delay for all serial link communications (RS232, RS485 or SSI).

POWER DOWN BACK-UP, ADDRESS 13 (OPTION).

Defines if the drive must save the position at power down (1 for enable this function and 0 for disable).

Status display 7 segment value, Address 51

0: Internal status (the display indicates drive alarms or status)
Change this value to force the display of any information (drive alarms are hidden).

```
bit7 = DP
bit3 = SEGMENT D
bit6 = SEGMENT A bit2 = SEGMENT E
bit5 = SEGMENT B bit1 = SEGMENT F
bit4 = SEGMENT C bit0 = SEGMENT G
```


Motor revolutions counter, Address 52.

This value can be read for motor position consulting and can be reset at a chosen position.

3.3 Regulation parameters

3.3.1 Configuration

Speed or Current loop control, Address 26.

0 for speed loop and 1 for current loop control. When speedloop is chosen, the command is read as a speed, when currentloop the command is read as a current.

Digital, analogue or other command, Address 27.
0 for digital and 1 for analogue.
Digital command :
parameter 50 (Digital command) is read to set the command value.
Analogue command :
Input voltage SPEED IN is converted to set the command value.

Digital command (speed or current), Address 50.
When digital command mode is set, this parameter defines the command value.

Analogue command offset, Address 28.

When analogue command mode is chosen, the input offset voltage can be adjusted with this parameter.

Command Slope, Address 29.

Command ramp generator, when this parameter is null, no ramp is performed. When a value different of null is computed, the command edges are limited (for digital and for analogue command), example :

Analogue or digital command applied to the drive

The Speed is not reached

Warning :
If pulse command is applied with a command slope different of zero, it is possible that the wanted speed will be not reached (see second speed cycle of the example).

3.3.2 Current Loop

See also section 4.2 of chapter D (How to set the current loop parameters, page 52).

PID CURRENT LOOP CONTROLLER :

Digital PID equation :

$$
\begin{gathered}
U_{C M}=K p \cdot i_{e[N]}+K i \cdot \sum_{i=0}^{N}\left(i_{e[i]} \cdot \Delta T\right)+K d \frac{i_{e[N]}-i_{e[N-1]}}{\Delta T} \\
\quad i_{e[N]}: \text { Last sample } \\
\Delta T: \text { Sampling time }
\end{gathered}
$$

The drive values are obtained with the following equations:

Current loop Proportional gain (Kp), Address 6.
2000 series: $\quad K p=\frac{P_{\text {CURRENT }}}{\hat{l}_{\text {MAX }}} \quad[\mathrm{V} / \mathrm{A}]$
4000 series : $\quad K p=\frac{\sqrt{3} \cdot P_{\text {CURRENT }}}{\hat{I}_{\text {MAX }}}[\mathrm{V} / \mathrm{A}]$
$P_{\text {Current }}=$ Parameter 6

Current loop Integral gain (KI), Address 7.

2000 series : $\quad K i=\frac{7500 \cdot I_{\text {CURRENT }}}{\hat{l}_{\text {MAX }}} \quad$ [V/As]
4000 series : $\quad K i=\frac{7500 \cdot \sqrt{3} \cdot I_{\text {CURRENT }}}{\hat{l}_{\text {MAX }}}[\mathrm{V} / \mathrm{As}]$
$I_{\text {CURRENT }}=$ Parameter 7

Current loop Differential gain (Kd), Address 8.

$$
\begin{array}{ll}
\text { 2000 series: } & K d=\frac{133 \cdot 10^{-6} \cdot D_{\text {CURRENT }}}{\hat{l}_{\text {MAX }}} \\
\text { 4000 series: } & K d=\frac{133 \cdot 10^{-6} \cdot \sqrt{3} \cdot D_{\text {CURRENT }}}{\hat{l}_{\text {MAX }}}
\end{array}
$$

$\mathrm{D}_{\text {CURRENT }}=$ Parameter 8

AdDRESS 9.

The PHASE ADVANCE is internally computed with a minimal value of $1.23 \mathrm{deg} /$ pairs of motor poles for 1000 rpm , to compensate the delay between the acquisition of the current and the PWM output.
Only larger values than this minimal value will affect the regulation.

3.3.3 Speed Loop

See also section 4.3 of chapter D (How to set the speed loop parameters, page 54).

PID SPEED LOOP CONTROLLER :

Real Speed

Digital PID equation :

$$
\begin{gathered}
i_{c}=K p \cdot \omega_{e[N]}+K i \cdot \sum_{i=0}^{N}\left(\omega_{e[i]} \cdot \Delta T\right)+K d \frac{\omega_{e[N]}-\omega_{e[N-1]}}{\Delta T} \\
\omega_{e[N]}: \text { Last sample }
\end{gathered}
$$

ΔT : Sampling time

The drive values are obtained with the following equations:

Speed loop Proportional gain, Address 20.

$$
\begin{aligned}
& K p=4,92 \cdot 10^{-6} \cdot \hat{l}_{M A X} \cdot P_{\text {SPEED }}[\text { Âs } / \mathrm{rad}] \\
& \text { P }_{\text {SPEED }}=\text { Parameter } 20
\end{aligned}
$$

Speed loop Integral gain, Address 21.

$$
K i=3,73 \cdot 10^{-2} \cdot \hat{l}_{M A X} \cdot I_{\text {SPEED }} \quad[\hat{A} / \mathrm{rad}]
$$

$$
I_{\text {SPEED }}=\text { Parameter } 21
$$

Speed loop Differential gain, Address 22.

$$
\begin{aligned}
& K d=6,5 \cdot 10^{-10} \cdot \hat{l}_{M A X} \cdot D_{S P E E D}[\hat{A} /(\mathrm{rad} \cdot \mathrm{~s})] \\
& \mathrm{D}_{\text {SPEED }}=\text { Parameter } 22
\end{aligned}
$$

4. How to set the parameters

To set the parameters, you need the Windows User software, refer to the section 1 of chapter B.

Resume of Windows User functions for setting the parameters :

Main window :

Regulation loop icon :

Store parameter icon :

Scope icon :

Automatic command icon :

Automatic command mode window :

Single Pulse mode button :

Single-polarity periodical mode button :

Square edge wave form button :

4.1 How to set the resolver shift angle parameter

This operation should be done when the resolver shift angle is unknown. In this case, the two following procedures are available :

4.1.1 Procedure using the motor setup tool from Windows user

\square A)

Double click on the «Feedback: Resolver Motor: Brushless» button.

$\square B)$

Click on the « Motor Setup tool » button and enable the drive.

■ C)

Click on the « GO » button to find an electric zero position.

- D)

Once the position is stable, disable the drive and click on the << Store >> button to store the new resolver shift angle.

4.1.2 Procedure for manual setting

$\square A)$
Click on the «Regulation loop » icon and click on the « M » (motor) button in the «Regulation loop» window.
\square B)
Set the «Maximum motor current » to 25% of the Nominal motor current in the « Motor features» window.

- C)

Click on the «Speed command» button in the «Regulation loop» window. Then click on the «Single-polarity periodical pulse mode» button in the «Automatic command mode » window.
Enter: $\quad A=120 \mathrm{rpm}$
$\mathrm{tx}=200 \mathrm{~ms}$
$\mathrm{T}=200 \mathrm{~ms}$
And click on the «Run » button.

- D)

Click on the «Resolver » button in the « Regulation loop » window and Enable the drive.

- E)

Search the «Resolver shift angle » range where the motor is running at 120 rpm .

The optimal value of «Resolver shift angle » is in the middle of the above mentioned range.

Functioning diagram depending of the resolver shift angle setting :
Optimal "Resolver shift angle"

Motor doesn't run

The optimal value of «Resolver shift angle » is given by :

$$
\text { Optimal resolver shift angle }=\frac{\alpha+\beta}{2}
$$

Disable drive, store the optimal « Resolver shift angle » by striking F2.

4.2 How to set the current loop parameters

The procedure for the manual setting is as follows :

- A)

Click on the «Regulation loop » icon and select the « current loop » control.
$\square B)$
Click on the «PID » button of the current controller and set :

- Current loop Integral gain to 0 .
- Current loop Differential gain to 0 .
- Phase advance to 0.
- Maximum motor current to the max. value.

Click on the «Resolver» button and set the «Resolver Shift angle » to its optimal value added or subtracted by 90°.

D)

Click on the «Current Command » button. Then click on the single pulse mode button in the «Automatic command mode » window.

Enter: $\quad A=$ Max. peak value of the motor
$\mathrm{tx}=100 \mathrm{~ms}$
select the square edge wave form.

Click on the «scope function» icon and select :

- Channel 1 : Current command (Parameter 182)
- Channel 2 : Instant current (Parameter 67)
- Suggested configuration :
- Time scale : $1 \mathrm{~ms} / \mathrm{div}$
- Vertical scale channel 1 and $2: \approx I_{\text {DRIVE nom }} / \operatorname{div}$
- F)

Enable the drive and click on the «Run » button in the «Automatic command mode » window.
\square G)
Optimize the «Current loop Proportional Gain » (Kp). The typical value of Kp is 100.

Store the optimal value of Kp by striking F2.

- H)

Optimize the «Current loop Integral Gain » (Ki). The typical value of Ki is 5 .

Store the optimal value of Ki by striking F2.
\square I)
The « Current loop Differential Gain » (Kd) remains in most applications at 0.
$\square \mathrm{J})$
Set the «Resolver Shift angle » again to its optimal value and store by striking F2.

4.3 How to set the speed loop parameters

The procedure is as follows :
$\square A)$
Click on the «Regulation loop » icon and select the « speed loop » control.
$\square B)$
Click on the « PID » button of the Speed controller and set : speed loop Integral gain to 0 . speed loop Differential gain to 0 . maximum speed (for 10V input) at max motor speed

- C)

Click on the «Speed command » button.
Then click on the « single pulse mode » button in the «Automatic command mode » window.
Enter: $\quad A=1 / 5$ of the application speed.
tx $=200 \mathrm{~ms}$ (for example).
select the square edge wave form.

Click on the « scope function» icon and select :

- Channel 1 : Digital command (Parameter 50)
- Channel 2 : Instant speed (Parameter 68)
- Suggested configuration:
- Time scale : $16 \mathrm{~ms} /$ div (with free running motor)
- Vertical scale channel 1 and $2: \approx 1 / 10$ appl. speed / div
$\square E)$
Enable the drive and click on the «Run » button in the «Automatic command mode » window.
- F)

Optimize the «Speed loop Proportional Gain ». The typical value is 5000. Two methods allow the setting of this gain.

\square F1)

Method without the «Scope function »
Vary the «Speed loop Proportional Gain » around the typical value. The motor whistle and oscillate when the gain is too high. In this case, decrease the gain to obtain a good behaviour (stability) in the whole speed range. Store this optimal gain by striking F2.

- F2)

Method with the «scope function»
The respond at a single speed step command looks as follows (with free running motor) :

Digital command

Store the optimal gain by striking F2.

- G)

Optimize the « speed loop Integral Gain».
The typical value is 50 .
Two methods allow the setting of this gain.

- G1)

Method without the «Scope function »

The «Speed loop Integral Gain» is too low when the axis moves «step by step » with a small speed command. The motor axis is too smooth.

This gain is too high when the motor axis oscillates with a small speed command.

This gain is optimized when the motor axis doesn't oscillates and when the stiffness of the motor axis is sufficient to avoid its motion « step by step ».

- G2)

Method with the «Scope function»
The respond at a single speed step command looks as follows :
Digital command

Store the optimal gain by striking F2.

The «speed loop Differential Gain » remains in most applications at 0.

5. Trouble shooting

Display	Trouble shooting
	I^{2} t reached alarm. - Check Resolver shift angle Parameter (P1). - Check 12 t motor Parameter (P5). - Check drive capacity for the application.
	Motor thermostat alarm. - Motor overload. - Motor thermal switch disconnected or bad connected. - Check Motor Thermostat n / o or n / c parameter (P2).
	Drive internal over temperature alarm ($>80^{\circ} \mathrm{C}$). - Drive overloaded. - Drive cooling deficient.
	Resolver alarm. - Resolver wiring or link failure. - Resolver failure. - Check resolver type see section Erreur ! Source du renvoi introuvable. of chapter A.
	Power module fault (over I or over temperature). - Switch off and check motor, look for short circuits between motor phases.
	Over or under voltage alarm - Check main supply input voltage L1, L2 and L3. - FBR fuse.
	Software watchdog. - Check time-out, Watchdog software communication parameter (P32). - Check serial link.
appears during 1 second on display.	Over current alarm (125% of maximum drive current reached). - Bad regulation parameters, refer to «How to set the current loop parameters », section 4.2 of chapter D. - Check Power supply voltage, $3 \times 230 \mathrm{~V}$ for 2000 series or $3 \times 400 \mathrm{~V}$ for 4000 series.
	Over speed alarm (125\% of max. motor speed reached) - Check Maximum speed (for 10V input) parameter (P23) value.
	Motor link fault. - Motor connection failure.

Display	Trouble shooting
	Parameter not OK (wrong checksum of stored parameter) - Check parameter and store parameters.
	Firmware not OK (only after an update of the firmware) - Reload firmware.
	Hardware incompatibility. - Reduce the speed

Trouble	Possible cause
Display 0 but the motor doesn't move when a speed command is applied	- End-limit switch enable - Max. drive current too low (P3) - Motor brake engaged
The motor jump to a position and stay blocked.	- Pair of motor poles parameter (PO) misadjusted. - Motor wiring on terminal $\mathrm{U}, \mathrm{V}, \mathrm{W}$ not in the correct sequence.
Motor noisy	- Check resolver cable - Check separation between resolver and motor cable (also inside the motor). - Check earth link - Check regulation parameters.
No link with Drive (Drive Offline appears in User software while the drive is connected to the computer).	- Check Axis selector position (if present) : RS232 : Position 0 RS485 : Position 1-15 The drive must be resetted to enable a change of the Axis selector position (for more information about Axis selector, see page 29). - Check link cable. - Check Serial Port number in User software.
Firmware upgrade cannot be performed.	- The firmware upgrade is possible only with RS232 link. - Check RS232 link

Chapter E - Asynchronous motor

Drive series 2000 and 4000 are able to control asynchronous motors. To perform this, a few conditions are required :

- Firmware version must include regulation for asynchronous motor (version 2011).
- Compatible Windows user (Version 1.20 or higher) for parameters settings.
- Asynchronous motor must have a resolver or an encoder feedback.

This chapter describes only special parameters suitable to asynchronous motor. Other parameters have the same functions defined previously in this manual.

1. Change of motor and feedback type

Important :

The change of motor and feedback type is possible only with Windows user version 1.20 or higher.

A double click in the motor/feedback box included in the toolbar of the Windows user enable a Window for the selection of motor and feedback type. This Window can be also called by the «Motor type» item of the «Configuration»menu .

If the firmware version does not include the possibility to change motor or feedback type, the selection are automatically disabled.

When the motor or the feedback type is changed, the parameter list is also updated in accordance with selected motor and feedback.
2. Special parameters for asynchronous motors

Addr.	St.	R/W	Unit	Limits	Description	
9		R/W	$\frac{100}{7 \mathrm{FFF}_{\mathrm{h}}} \%$	0..15\%	Slip factor	
11		R/W	-	$0 . .1$	Cosinus phii	
54		R/W	1/revolution	0..7FFFh	Encoder inp	ut resolution
55		R/W	0.925 RPM	8000h..7FFFh	Field weake	ning speed
65		R			Alarm regist	
	Bit		Description			Drive Display
	10		Overspeed asynchronous			18

SLIP factor, Address 9.

Slip factor defined the ratio:

$$
\text { Speed }_{\text {synchronous }} \text { - Speed }
$$

Speed $_{\text {synchronous }}$
Standard value=1..7\%, usually, 4% is a good value.

Cosinus phil, Address 11.

The cosinus phi is given from the manufacture, usually, a value between 0.8 and 0.9.

2.1 Field weakening

Field weakening speed, Address 55.

If field weakening is needed, this parameter must be set to the speed value the field weakening must begin.

2.2 Asynchronous alarm

Asynchronous overspeed, set when the motor speed is higher than 133% of synchronous speed (only if field weakening is disabled).

2.3 Feedback type

Two feedback types can be used with asynchronous motor :

- Resolver
- Encoder

2.3.1 Resolver feedback

With a resolver feedback, the settings are identical as describe for brushless motors. The Resolver shift angle is ignored.

2.3.2 Encoder feedback

The encoder must be external powered.

The motor encoder must be wired to the encoder inputs of the XENCODER connector (see section 1.3.3 of chapter D, XENCODER wiring).

With encoder feedback, the encoder simulation is disabled, the input is directly wired on encoder output. All parameters for the configuration of encoder simulation are not used.

Encoder input resolution, Address 54.

The encoder resolution (number of pulse for one revolution) must be set in this parameter.

These instructions have been written and checked to the best of our knowledge and belief.
However, IRT will not be liable for errors and reserves the right for changes at any time without notice.

Index

Adj.factor sine/cosine, 11

Alarm, 15, 33
Alarm latch, 13, 41
Analogue command offset, 13, 43
Asynchronous motor, 58
Alarms, 59
Change of feedback type, 58
Change of motor type, 58
Cosinus phi, 59
Encoder feedback, 60
Encoder resolution, 60
Field weakening speed, 59
Resolver feedback, 60
Slip Factor, 59
Special parameters, 59

Cable

Connections See Wiring
Cross-sections, 20
Length, 20
Command slope, 13, 44
Current loop
Differential gain, 11, 46
Integral gain, 11, 45
Proportional gain, 11, 45
Digital command, 14, 43
Digital or Analogue command, 12, 43
Direction stop, 12, 40
Display
Alarms, 33
Segment value, 14, 43
Warnings, 33
Encoder
Input configuration, 11, 39
Input counter, 14, 40
Marker pulse position, 12, 38
Marker pulse width, 12, 38
Resolution, 12, 38
Encoder
Dead window, 13
Encoder
Dead window, 38
End limit switches, 12, 40
External I-limit/Loop select, 11, 41
1^{2} t motor, 11, 35
Maximum speed, 12, 36
Monitoring Relay Rdy/Ala/Ena, 13, 41
Motor
Asynchronous See Asynchronous motor
Cable, 20

Instantaneous current, 16
Instantaneous speed, 16
Maximum current, 11, 34
Maximum speed, 12, 36
Motor brake delay, 13, 42
Motor brake wiring, 30
Motor I^{2} t, 11, 35
Nominal current, 11, 34
Pair of motor poles, 11, 34
Phases, 31
Revolutions counter, 14, 43
Thermostat, 11, 34
XMOTOR Wiring, 29, 30
Parameters, 48
Description, 10
Global list, 11
How to set current loop parameters, 51
How to set Resolver shift angle, 49
How to set the speed loop parameters, 53
Phase advance, 11, 46
Resolver
wiring, 23
Resolver shift angle, 11, 50
Serial link
Dialogue examples, 9
Dialogue protocol, 8
Slip Factor (asynchronous motor), 59
Speed loop
Differential gain, 12, 47
Integral gain, 12, 47
Proportional gain, 12, 47
Speed or Current loop control, 12
Status, 15
Trouble shooting, 56
User software
2000WU.EXE (Windows software), 5
Warnings, 33
Watchdog software, 13, 42
Windows User, 5
Wiring
Control unit, 22
Global plan, 21
XCOMMAND, 24
XENCODER, 25
XLINE, 29
XMOTOR, 29, 30
XRESOLVER, 23
XSERIAL 232, 26
XSERIAL 485, 26

Drive 2000/4000, OPERATING MANUAL EVOLUTION

	$\begin{aligned} & \text { zo } \\ & \frac{0}{6} \\ & \text { un } \end{aligned}$		$\begin{aligned} & \text { 山 } \\ & \mathbf{U} \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { z } \\ & \stackrel{0}{\mathbf{n}} \\ & \underset{\sim}{\ddot{\sim}} \end{aligned}$	DESCRIPTION
		1		2	New pictures
1	1	20	20	3	New drives type
				4	New layout design

Last modification : September 2013-Rev. 4

